Left invariant flat projective structures on Lie groups and prehomogeneous vector spaces
نویسندگان
چکیده
منابع مشابه
Left Invariant Contact Structures on Lie Groups
A result from Gromov ensures the existence of a contact structure on any connected non-compact odd dimensional Lie group. But in general such structures are not invariant under left translations. The problem of finding which Lie groups admit a left invariant contact structure (contact Lie groups), is then still wide open. We perform a ‘contactization’ method to construct, in every odd dimension...
متن کاملGeometric structures on Lie groups with flat bi - invariant metric Vicente Cortés
Let L ⊂ V = R be a maximally isotropic subspace. It is shown that any simply connected Lie group with a bi-invariant flat pseudo-Riemannian metric of signature (k, l) is 2-step nilpotent and is defined by an element η ∈ Λ3L ⊂ Λ3V . If η is of type (3, 0)+(0, 3) with respect to a skew-symmetric endomorphism J with J2 = ǫId, then the Lie group L(η) is endowed with a left-invariant nearly Kähler s...
متن کاملHarmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملA remark on left invariant metrics on compact Lie groups
The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 2012
ISSN: 0018-2079
DOI: 10.32917/hmj/1333113005